Stochastic escape processes from a non-symmetric potential normal form .2. The marginal case
Abstract
The first-passage time distribution to reach the attractor of the stochastic differential equation (X) over dot(t) = a(X(2) - X(3)) + root epsilon xi(t) is analytically obtained by using a previously reported scheme: the stochastic path perturbation approach. A second-order perturbation theory, in the small noise parameter root epsilon, is introduced to analyse the random escape, of the stochastic paths, from the marginal unstable state X = 0. The anomalous fluctuation of the phase-space variable X(t) is analytically calculated by using the instanton-like approximation. We have carried out Monte Carlo simulations showing good agreement with our theoretical predictions.
Más información
| Título según WOS: | ID WOS:A1997WT34000011 Not found in local WOS DB |
| Título de la Revista: | JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL |
| Volumen: | 30 |
| Número: | 7 |
| Editorial: | IOP PUBLISHING LTD |
| Fecha de publicación: | 1997 |
| Página de inicio: | 2287 |
| Página final: | 2296 |
| DOI: |
10.1088/0305-4470/30/7/011 |
| Notas: | ISI |