Stochastic escape processes from a non-symmetric potential normal form .2. The marginal case

Caceres, MO; Fuentes, MA; Budde, CE

Abstract

The first-passage time distribution to reach the attractor of the stochastic differential equation (X) over dot(t) = a(X(2) - X(3)) + root epsilon xi(t) is analytically obtained by using a previously reported scheme: the stochastic path perturbation approach. A second-order perturbation theory, in the small noise parameter root epsilon, is introduced to analyse the random escape, of the stochastic paths, from the marginal unstable state X = 0. The anomalous fluctuation of the phase-space variable X(t) is analytically calculated by using the instanton-like approximation. We have carried out Monte Carlo simulations showing good agreement with our theoretical predictions.

Más información

Título según WOS: ID WOS:A1997WT34000011 Not found in local WOS DB
Título de la Revista: JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL
Volumen: 30
Número: 7
Editorial: IOP PUBLISHING LTD
Fecha de publicación: 1997
Página de inicio: 2287
Página final: 2296
DOI:

10.1088/0305-4470/30/7/011

Notas: ISI