Computing the non-linear anomalous diffusion equation from first principles
Abstract
We investigate asymptotically the occurrence of anomalous diffusion and its associated family of statistical evolution equations. Starting from a non-Markovian process a la Langevin we show that the mean probability distribution of the displacement of a particle follows a generalized non-linear Fokker-Planck equation. Thus we show that the anomalous behavior can be linked to a fast fluctuation process with memory from a microscopic dynamics level, and slow fluctuations of the dissipative variable. The general results can be applied to a wide range of physical systems that present a departure from the Brownian regime. (C) 2007 Elsevier B.V. All rights reserved.
Más información
| Título según WOS: | ID WOS:000253617400015 Not found in local WOS DB |
| Título de la Revista: | PHYSICS LETTERS A |
| Volumen: | 372 |
| Número: | 8 |
| Editorial: | Elsevier |
| Fecha de publicación: | 2008 |
| Página de inicio: | 1236 |
| Página final: | 1239 |
| DOI: |
10.1016/j.physleta.2007.09.020 |
| Notas: | ISI |