Angiotensin-(1-9) Reduces Cardiovascular and Renal Inflammation in Experimental Renin-Independent Hypertension
Keywords: hypertension, inflammation, fibrosis, angiotensin-(1-9), Renin-angiotensin system., AT2 receptor
Abstract
Hypertension-induced cardiovascular and renal damage can be mediated by activation of the renin-angiotensin-aldosterone system. There are different factors beyond renin-angiotensin-aldosterone system involved in hypertension and renal damage. Inflammation has emerged as an important mediator of hypertension and cardiovascular and kidney damage. Angiotensin-(1-9), a peptide of the renin-angiotensin system, counter-regulates both the physiological and pathological actions of angiotensin II. Recent data has shown that angiotensin-(1-9) protects the heart and blood vessels from adverse cardiovascular remodeling in experimental models of hypertension and/or heart failure and reduces cardiac fibrosis in stroke-prone, spontaneously hypertensive rats. These effects are mediated by the angiotensin II type 2 receptor (AT2R). However, it remains unknown whether angiotensin-(1-9) also has an anti-inflammatory effect. In the present study, we investigate whether angiotensin-(1-9) reduces inflammation and fibrosis in the heart, arteries, and kidney in a DOCA-salt hypertensive model and explore the mechanisms underlying the amelioration of end-organ damage. DOCA-salt hypertensive rats received: a) vehicle, b) angiotensin-(1-9), c) PD123319 (AT2R blocker), d) angiotensin-(1-9) plus A779 (a Mas receptor blocker) or e) angiotensin-(1-9) plus PD123319, and sham rats were used as a control. Our results showed that angiotensin-(1-9) decreased hypertension and increased vasodilation in DOCA-salt hypertensive rats. These actions were partially inhibited by PD123319. Moreover, angiotensin-(1-9) decreased diuresis, fibrosis, and inflammation. These beneficial effects were not mediated by Mas or AT2R blockers. We concluded that angiotensin-(1-9) protects against volume overload-induced hypertensive cardiovascular and kidney damage by decreasing inflammation in the heart, aortic wall, and kidney, through mechanisms independent of the Mas or AT2R.
Más información
Título de la Revista: | Biochemical Pharmacology |
Volumen: | 156 |
Editorial: | Elsevier |
Fecha de publicación: | 2018 |
Página de inicio: | 357 |
Página final: | 370 |
Idioma: | English |
Notas: | ISI; doi: 10.1016/j.bcp.2018.08.045 |