Graphs with Maximum Laplacian-Energy-Like Invariant and Incidence Energy
Keywords: algebraic connectivity, KIRCHHOFF INDEX, RANDIC ENERGY, SPECTRUM. MATRICES, LATTICE
Abstract
The Laplacian-energy-like invariant, LEL, is the sum of the square roots of the Laplacian eigenvalues of the underlying graph G. The incidence energy IE is the sum of the square roots of the signless Laplacian eigenvalues of G. The vertex bipartiteness v(b) of a graph G is the minimum number of vertices whose deletion from G results in a bipartite graph. Graphs having maximum LEL and IE values are determined among graphs with a fixed number n of vertices and fixed vertex bipartiteness, 1 <= v(b) <= n - 3.
Más información
Título de la Revista: | MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY |
Volumen: | 75 |
Número: | 2 |
Editorial: | UNIV KRAGUJEVAC, FAC SCIENCE, PO BOX 60, RADOJA DOMANOVICA 12, KRAGUJEVAC 34000, SERBIA |
Fecha de publicación: | 2016 |
Página de inicio: | 331 |
Página final: | 342 |
Idioma: | ENGLISH |
Financiamiento/Sponsor: | Universidad Católica del Norte |
Notas: | ISI |