Graphs with Maximum Laplacian-Energy-Like Invariant and Incidence Energy

de Freitas, Maria Aguieras A; Gutman, Ivan; Robbiano, Maria

Keywords: algebraic connectivity, KIRCHHOFF INDEX, RANDIC ENERGY, SPECTRUM. MATRICES, LATTICE

Abstract

The Laplacian-energy-like invariant, LEL, is the sum of the square roots of the Laplacian eigenvalues of the underlying graph G. The incidence energy IE is the sum of the square roots of the signless Laplacian eigenvalues of G. The vertex bipartiteness v(b) of a graph G is the minimum number of vertices whose deletion from G results in a bipartite graph. Graphs having maximum LEL and IE values are determined among graphs with a fixed number n of vertices and fixed vertex bipartiteness, 1 <= v(b) <= n - 3.

Más información

Título de la Revista: MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY
Volumen: 75
Número: 2
Editorial: UNIV KRAGUJEVAC, FAC SCIENCE, PO BOX 60, RADOJA DOMANOVICA 12, KRAGUJEVAC 34000, SERBIA
Fecha de publicación: 2016
Página de inicio: 331
Página final: 342
Idioma: ENGLISH
Financiamiento/Sponsor: Universidad Católica del Norte
Notas: ISI