Crossing information in two-dimensional Sandpiles

Gajardo A.; Goles, E.

Abstract

We prove that in a two-dimensional Sandpile automaton, embedded in a regular infinite planar cellular space, it is impossible to cross information, if the bit of information is the presence (or absence) of an avalanche. This proves that it is impossible to embed arbitrary logical circuits in a Sandpile through quiescent configurations. Our result applies also for the non-planar neighborhood of Moore. Nevertheless, we also show that it is possible to compute logical circuits with a two-dimensional Sandpile, if a neighborhood of radius two is used in Z2; crossing information becomes possible in that case, and we conclude that for this neighborhood the Sandpile is P-complete and Turing universal. © 2006 Elsevier B.V. All rights reserved.

Más información

Título según WOS: Crossing information in two-dimensional Sandpiles
Título según SCOPUS: Crossing information in two-dimensional Sandpiles
Título de la Revista: THEORETICAL COMPUTER SCIENCE
Volumen: 369
Número: 01-mar
Editorial: ELSEVIER SCIENCE BV
Fecha de publicación: 2006
Página de inicio: 463
Página final: 469
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0304397506006074
DOI:

10.1016/j.tcs.2006.09.022

Notas: ISI, SCOPUS