The two-dimensional Lazer-McKenna conjecture for an exponential nonlinearity
Abstract
We consider the problem of Ambrosetti-Prodi type{(Δ u + eu = s φ{symbol}1 + h (x), in Ω,; u = 0, on ∂ Ω,) where Ω is a bounded, smooth domain in R2, φ{symbol}1 is a positive first eigenfunction of the Laplacian under Dirichlet boundary conditions and h ∈ C0, α (over(Ω, -)). We prove that given k ≥ 1 this problem has at least k solutions for all sufficiently large s > 0, which answers affirmatively a conjecture by Lazer and McKenna [A.C. Lazer, P.J. McKenna, On the number of solutions of a nonlinear Dirichlet problem, J. Math. Anal. Appl. 84 (1981) 282-294] for this case. The solutions found exhibit multiple concentration behavior around maxima of φ{symbol}1 as s → + ∞. © 2006 Elsevier Inc. All rights reserved.
Más información
Título según WOS: | The two-dimensional Lazer-McKenna conjecture for an exponential nonlinearity |
Título según SCOPUS: | The two-dimensional Lazer-McKenna conjecture for an exponential nonlinearity |
Título de la Revista: | JOURNAL OF DIFFERENTIAL EQUATIONS |
Volumen: | 231 |
Número: | 1 |
Editorial: | ACADEMIC PRESS INC ELSEVIER SCIENCE |
Fecha de publicación: | 2006 |
Página de inicio: | 108 |
Página final: | 134 |
Idioma: | English |
URL: | http://linkinghub.elsevier.com/retrieve/pii/S0022039606002543 |
DOI: |
10.1016/j.jde.2006.07.003 |
Notas: | ISI, SCOPUS |