Genotoxic stress triggers the activation of IRE1 alpha-dependent RNA decay to modulate the DNA damage response

Dufey, Estefanie; Bravo-San Pedro, Jose Manuel; Eggers, Cristian; Gonzalez-Quiroz, Matias; Urra, Hery; Sagredo, Alfredo, I; Sepulveda, Denisse; Pihan, Philippe; Carreras-Sureda, Amado; Hazari, Younis; Sagredo, Eduardo A.; Gutierrez, Daniela; Valls, Cristian; Papaioannou, Alexandra; Acosta-Alvear, Diego; et. al.

Abstract

The molecular connections between homeostatic systems that maintain both genome integrity and proteostasis are poorly understood. Here we identify the selective activation of the unfolded protein response transducer IRE1 alpha under genotoxic stress to modulate repair programs and sustain cell survival. DNA damage engages IRE1 alpha signaling in the absence of an endoplasmic reticulum (ER) stress signature, leading to the exclusive activation of regulated IRE1 alpha -dependent decay (RIDD) without activating its canonical output mediated by the transcription factor XBP1. IRE1 alpha endoribonuclease activity controls the stability of mRNAs involved in the DNA damage response, impacting DNA repair, cell cycle arrest and apoptosis. The activation of the c-Abl kinase by DNA damage triggers the oligomerization of IRE1 alpha to catalyze RIDD. The protective role of IRE1 alpha under genotoxic stress is conserved in fly and mouse. Altogether, our results uncover an important intersection between the molecular pathways that sustain genome stability and proteostasis. IRE1 alpha plays a key role in the unfolded protein response (UPR) by promoting the unconventional splicing of the XBP1 and the selective cleavage of RNAs. Here the authors report that IRE1 alpha is activated upon the DNA damage response and selectively controls the stability of mRNAs to maintain genome integrity.

Más información

Título según WOS: Genotoxic stress triggers the activation of IRE1 alpha-dependent RNA decay to modulate the DNA damage response
Título de la Revista: NATURE COMMUNICATIONS
Volumen: 11
Número: 1
Editorial: NATURE PORTFOLIO
Fecha de publicación: 2020
DOI:

10.1038/S41467-020-15694-Y

Notas: ISI