Supporting weakly Pareto optimal allocations in infinite dimensional nonconvex economies
Abstract
In this paper, we prove a new version of the Second Welfare Theorem for economies with a finite number of agents and an infinite number of commodities, when the preference correspondences are not convex-valued and/or when the total production set is not convex. For this kind of nonconvex economies, a recent result, obtained by one of the authors, introduces conditions which, when applied to the convex case, give for Banach commodity spaces the well-known result of decentralization by continuous prices of Pareto-optimal allocations under an interiority condition. In this paper, in order to prove a different version of the Second Welfare Theorem, we reinforce the conditions on the commodity space, assumed here to be a Banach lattice, and introduce a nonconvex version of the properness assumptions on preferences and the total production set. Applied to the convex case, our result becomes the usual Second Welfare Theorem when properness assumptions replace the interiority condition. The proof uses a Hahn-Banach Theorem generalization by Borwein and Jofré (in Joper Res Appl Math 48:169-180, 1997) which allows to separate nonconvex sets in general Banach spaces. © Springer-Verlag 2006.
Más información
Título según WOS: | Supporting weakly Pareto optimal allocations in infinite dimensional nonconvex economies |
Título según SCOPUS: | Supporting weakly Pareto optimal allocations in infinite dimensional nonconvex economies |
Título de la Revista: | ECONOMIC THEORY |
Volumen: | 29 |
Número: | 3 |
Editorial: | Springer |
Fecha de publicación: | 2006 |
Página de inicio: | 549 |
Página final: | 564 |
Idioma: | English |
URL: | http://link.springer.com/10.1007/s00199-005-0033-y |
DOI: |
10.1007/s00199-005-0033-y |
Notas: | ISI, SCOPUS |