Singular perturbation for Volterra equations of convolution type

Lizama C.; Prado, H

Abstract

Under the assumption that A is the generator of a twice integrated cosine family and K is a scalar valued kernel, we solve the singular perturbation problem(Eε{lunate}){Mathematical expression}when ε{lunate} → 0+, for the integrodifferential equation(E)w′ (t) = Aw (t) + (K * Aw) (t) + f (t), (t ≥ 0),on a Banach space. If the kernel K verifies some regularity conditions, then we show that problem (Eε{lunate}) has a unique solution uε{lunate}(t) for each small ε{lunate} > 0. Moreover uε{lunate}(t) converges as ε{lunate} → 0+, to the unique solution u(t) of equation (E). © 2006 Elsevier Inc. All rights reserved.

Más información

Título según WOS: Singular perturbation for Volterra equations of convolution type
Título según SCOPUS: Singular perturbation for Volterra equations of convolution type
Título de la Revista: APPLIED MATHEMATICS AND COMPUTATION
Volumen: 181
Número: 2
Editorial: Elsevier Science Inc.
Fecha de publicación: 2006
Página de inicio: 1624
Página final: 1634
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0096300306002943
DOI:

10.1016/j.amc.2006.03.016

Notas: ISI, SCOPUS