Singular perturbation for Volterra equations of convolution type
Abstract
Under the assumption that A is the generator of a twice integrated cosine family and K is a scalar valued kernel, we solve the singular perturbation problem(Eε{lunate}){Mathematical expression}when ε{lunate} → 0+, for the integrodifferential equation(E)w′ (t) = Aw (t) + (K * Aw) (t) + f (t), (t ≥ 0),on a Banach space. If the kernel K verifies some regularity conditions, then we show that problem (Eε{lunate}) has a unique solution uε{lunate}(t) for each small ε{lunate} > 0. Moreover uε{lunate}(t) converges as ε{lunate} → 0+, to the unique solution u(t) of equation (E). © 2006 Elsevier Inc. All rights reserved.
Más información
Título según WOS: | Singular perturbation for Volterra equations of convolution type |
Título según SCOPUS: | Singular perturbation for Volterra equations of convolution type |
Título de la Revista: | APPLIED MATHEMATICS AND COMPUTATION |
Volumen: | 181 |
Número: | 2 |
Editorial: | Elsevier Science Inc. |
Fecha de publicación: | 2006 |
Página de inicio: | 1624 |
Página final: | 1634 |
Idioma: | English |
URL: | http://linkinghub.elsevier.com/retrieve/pii/S0096300306002943 |
DOI: |
10.1016/j.amc.2006.03.016 |
Notas: | ISI, SCOPUS |