Variational reduction for Ginzburg-Landau vortices
Abstract
Let Ω be a bounded domain with smooth boundary in R2. We construct non-constant solutions to the complex-valued Ginzburg-Landau equation ε2 Δ u + (1 - | u |2) u = 0 in Ω, as ε → 0, both under zero Neumann and Dirichlet boundary conditions. We reduce the problem of finding solutions having isolated zeros (vortices) with degrees ±1 to that of finding critical points of a small C1-perturbation of the associated renormalized energy. This reduction yields general existence results for vortex solutions. In particular, for the Neumann problem, we find that if Ω is not simply connected, then for any k ≥ 1 a solution with exactly k vortices of degree one exists. © 2006 Elsevier Inc. All rights reserved.
Más información
| Título según WOS: | Variational reduction for Ginzburg-Landau vortices |
| Título según SCOPUS: | Variational reduction for Ginzburg-Landau vortices |
| Título de la Revista: | JOURNAL OF FUNCTIONAL ANALYSIS |
| Volumen: | 239 |
| Número: | 2 |
| Editorial: | ACADEMIC PRESS INC ELSEVIER SCIENCE |
| Fecha de publicación: | 2006 |
| Página de inicio: | 497 |
| Página final: | 541 |
| Idioma: | English |
| URL: | http://linkinghub.elsevier.com/retrieve/pii/S0022123606003089 |
| DOI: |
10.1016/j.jfa.2006.07.006 |
| Notas: | ISI, SCOPUS |