Tight bounds on the algebraic connectivity of Bethe trees

Rojo, O; Medina, L

Abstract

A rooted Bethe tree Bd, k is an unweighted rooted tree of k levels in which the vertex root has degree d, the vertices in level 2 to level (k - 1) have degree (d + 1) and the vertices in level k have degree 1 (pendant vertices). In this paper, we derive tight upper and lower bounds on the algebraic connectivity of(1)a Bethe tree Bd, k, and(2)a tree Bd, k1, k2 obtained by the union of two Bethe trees Bd, k1 and Bd, k2 having in common the vertex root. A useful tool in our study is the Sherman-Morrison formula. © 2006 Elsevier Inc. All rights reserved.

Más información

Título según WOS: Tight bounds on the algebraic connectivity of Bethe trees
Título según SCOPUS: Tight bounds on the algebraic connectivity of Bethe trees
Título de la Revista: LINEAR ALGEBRA AND ITS APPLICATIONS
Volumen: 418
Número: 02-mar
Editorial: Elsevier Science Inc.
Fecha de publicación: 2006
Página de inicio: 840
Página final: 853
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0024379506001649
DOI:

10.1016/j.laa.2006.03.016

Notas: ISI, SCOPUS