High frequency solutions for the singularly-perturbed one-dimensional nonlinear Schrodinger equation

Felmer P.; Martínez, S.; Tanaka K.

Abstract

This article is devoted to the nonlinear Schrödinger equation [InlineMediaObject not available: see fulltext.] when the parameter ε approaches zero. All possible asymptotic behaviors of bounded solutions can be described by means of envelopes, or alternatively by adiabatic profiles. We prove that for every envelope, there exists a family of solutions reaching that asymptotic behavior, in the case of bounded intervals. We use a combination of the Nehari finite dimensional reduction together with degree theory. Our main contribution is to compute the degree of each cluster, which is a key piece of information in order to glue them.

Más información

Título según WOS: High frequency solutions for the singularly-perturbed one-dimensional nonlinear Schrodinger equation
Título según SCOPUS: High frequency solutions for the singularly-perturbed one-dimensional nonlinear Schrödinger equation
Título de la Revista: ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS
Volumen: 182
Número: 2
Editorial: Springer
Fecha de publicación: 2006
Página de inicio: 333
Página final: 366
Idioma: English
URL: http://link.springer.com/10.1007/s00205-006-0431-8
DOI:

10.1007/s00205-006-0431-8

Notas: ISI, SCOPUS