A priori and a posteriori error estimates for a virtual element spectral analysis for the elasticity equations
Abstract
We present a priori and a posteriori error analyses of a virtual element method (VEM) to approximate the vibration frequencies and modes of an elastic solid. We analyse a variational formulation relying only on the solid displacement and propose an H-1 (Omega)-conforming discretization by means of the VEM. Under standard assumptions on the computational domain, we show that the resulting scheme provides a correct approximation of the spectrum and prove an optimal-order error estimate for the eigenfunctions and a double order for the eigenvalues. Since the VEM has the advantage of using general polygonal meshes, which allows efficient implementation of mesh refinement strategies, we also introduce a residual-type a posteriori error estimator and prove its reliability and efficiency. We use the corresponding error estimator to drive an adaptive scheme. Finally, we report the results of a couple of numerical tests that allow us to assess the performance of this approach.
Más información
Título según WOS: | A priori and a posteriori error estimates for a virtual element spectral analysis for the elasticity equations |
Título de la Revista: | IMA JOURNAL OF NUMERICAL ANALYSIS |
Volumen: | 40 |
Número: | 1 |
Editorial: | OXFORD UNIV PRESS |
Fecha de publicación: | 2020 |
Página de inicio: | 322 |
Página final: | 357 |
DOI: |
10.1093/IMANUM/DRY063 |
Notas: | ISI |