A priori and a posteriori error estimates for a virtual element spectral analysis for the elasticity equations

Mora, David; Rivera, Gonzalo

Abstract

We present a priori and a posteriori error analyses of a virtual element method (VEM) to approximate the vibration frequencies and modes of an elastic solid. We analyse a variational formulation relying only on the solid displacement and propose an H-1 (Omega)-conforming discretization by means of the VEM. Under standard assumptions on the computational domain, we show that the resulting scheme provides a correct approximation of the spectrum and prove an optimal-order error estimate for the eigenfunctions and a double order for the eigenvalues. Since the VEM has the advantage of using general polygonal meshes, which allows efficient implementation of mesh refinement strategies, we also introduce a residual-type a posteriori error estimator and prove its reliability and efficiency. We use the corresponding error estimator to drive an adaptive scheme. Finally, we report the results of a couple of numerical tests that allow us to assess the performance of this approach.

Más información

Título según WOS: A priori and a posteriori error estimates for a virtual element spectral analysis for the elasticity equations
Título de la Revista: IMA JOURNAL OF NUMERICAL ANALYSIS
Volumen: 40
Número: 1
Editorial: OXFORD UNIV PRESS
Fecha de publicación: 2020
Página de inicio: 322
Página final: 357
DOI:

10.1093/IMANUM/DRY063

Notas: ISI