Stationary measures associated to analytic iterated function schemes

Cipriano, Italo; Pollicott, Mark

Abstract

We study how the stationary measure associated to analytic contractions on the unit interval behaves under changes in the contractions and the weights. Firstly we give a simple proof of the fact that the integrals of analytic functions with respect to the stationary measure vary analytically if we perturb the contractions and the weights analytically. Secondly, we consider the special case of affine contractions and we prove a conjecture of J. Fraser in [3] on the Kantorovich-Wasserstein distance between two stationary measures associated to affine contractions on the unit interval with different rates of contraction.

Más información

Título según WOS: ID WOS:000432020500002 Not found in local WOS DB
Título de la Revista: MATHEMATISCHE NACHRICHTEN
Volumen: 291
Número: 7
Editorial: WILEY-V C H VERLAG GMBH
Fecha de publicación: 2018
Página de inicio: 1049
Página final: 1054
DOI:

10.1002/mana.201600127

Notas: ISI