Realization of a Choquet simplex as the set of invariant probability measures of a tiling system

Cortez, MI

Abstract

In this paper we show that, for every Choquet simplex K and for every d > 1, there exists a ℤd-Toeplitz system whose set of invariant probability measures is affine homeomorphic to K. Then, we conclude that K may be realized as the set of invariant probability measures of a tiling system (ΩT, ℝd). © 2006 Cambridge University Press.

Más información

Título según WOS: Realization of a Choquet simplex as the set of invariant probability measures of a tiling system
Título según SCOPUS: Realization of a Choquet simplex as the set of invariant probability measures of a tiling system
Título de la Revista: ERGODIC THEORY AND DYNAMICAL SYSTEMS
Volumen: 26
Número: 5
Editorial: CAMBRIDGE UNIV PRESS
Fecha de publicación: 2006
Página de inicio: 1417
Página final: 1441
Idioma: English
URL: http://www.journals.cambridge.org/abstract_S0143385706000319
DOI:

10.1017/S0143385706000319

Notas: ISI, SCOPUS