Floquet operators without singular continuous spectrum
Abstract
Let U be a unitary operator defined on a infinite-dimensional separable complex Hilbert space H. Assume there exists a self-adjoint operator A on H such thatU* A U - A ≥ c I + K for some positive constant c and compact operator K. Then, assuming the commutators U* A U - A and [A, U* A U] admit a bounded extension over H, we prove the spectrum of the operator U has no singular continuous component and only a finite number of eigenvalues of finite multiplicity. We give a localized version of this result and apply it to study the spectrum of the Floquet operator of periodic time-dependent kicked quantum systems. © 2006 Elsevier Inc. All rights reserved.
Más información
| Título según WOS: | Floquet operators without singular continuous spectrum |
| Título según SCOPUS: | Floquet operators without singular continuous spectrum |
| Título de la Revista: | JOURNAL OF FUNCTIONAL ANALYSIS |
| Volumen: | 238 |
| Número: | 2 |
| Editorial: | ACADEMIC PRESS INC ELSEVIER SCIENCE |
| Fecha de publicación: | 2006 |
| Página de inicio: | 489 |
| Página final: | 517 |
| Idioma: | English |
| URL: | http://linkinghub.elsevier.com/retrieve/pii/S0022123606001637 |
| DOI: |
10.1016/j.jfa.2006.03.028 |
| Notas: | ISI, SCOPUS |