Floquet operators without singular continuous spectrum
Abstract
Let U be a unitary operator defined on a infinite-dimensional separable complex Hilbert space H. Assume there exists a self-adjoint operator A on H such thatU* A U - A ≥ c I + K for some positive constant c and compact operator K. Then, assuming the commutators U* A U - A and [A, U* A U] admit a bounded extension over H, we prove the spectrum of the operator U has no singular continuous component and only a finite number of eigenvalues of finite multiplicity. We give a localized version of this result and apply it to study the spectrum of the Floquet operator of periodic time-dependent kicked quantum systems. © 2006 Elsevier Inc. All rights reserved.
Más información
Título según WOS: | Floquet operators without singular continuous spectrum |
Título según SCOPUS: | Floquet operators without singular continuous spectrum |
Título de la Revista: | JOURNAL OF FUNCTIONAL ANALYSIS |
Volumen: | 238 |
Número: | 2 |
Editorial: | ACADEMIC PRESS INC ELSEVIER SCIENCE |
Fecha de publicación: | 2006 |
Página de inicio: | 489 |
Página final: | 517 |
Idioma: | English |
URL: | http://linkinghub.elsevier.com/retrieve/pii/S0022123606001637 |
DOI: |
10.1016/j.jfa.2006.03.028 |
Notas: | ISI, SCOPUS |