Floquet operators without singular continuous spectrum

bourget, O; Fernández, C.

Abstract

Let U be a unitary operator defined on a infinite-dimensional separable complex Hilbert space H. Assume there exists a self-adjoint operator A on H such thatU* A U - A ≥ c I + K for some positive constant c and compact operator K. Then, assuming the commutators U* A U - A and [A, U* A U] admit a bounded extension over H, we prove the spectrum of the operator U has no singular continuous component and only a finite number of eigenvalues of finite multiplicity. We give a localized version of this result and apply it to study the spectrum of the Floquet operator of periodic time-dependent kicked quantum systems. © 2006 Elsevier Inc. All rights reserved.

Más información

Título según WOS: Floquet operators without singular continuous spectrum
Título según SCOPUS: Floquet operators without singular continuous spectrum
Título de la Revista: JOURNAL OF FUNCTIONAL ANALYSIS
Volumen: 238
Número: 2
Editorial: ACADEMIC PRESS INC ELSEVIER SCIENCE
Fecha de publicación: 2006
Página de inicio: 489
Página final: 517
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0022123606001637
DOI:

10.1016/j.jfa.2006.03.028

Notas: ISI, SCOPUS