Solving Equations of Motion by Using Monte Carlo Metropolis: Novel Method Via Random Paths Sampling and the Maximum Caliber Principle
Abstract
A permanent challenge in physics and other disciplines is to solve Euler–Lagrange equations. Thereby, a beneficial investigation is to continue searching for new procedures to perform this task. A novel Monte Carlo Metropolis framework is presented for solving the equations of motion in Lagrangian systems. The implementation lies in sampling the path space with a probability functional obtained by using the maximum caliber principle. Free particle and harmonic oscillator problems are numerically implemented by sampling the path space for a given action by using Monte Carlo simulations. The average path converges to the solution of the equation of motion from classical mechanics, analogously as a canonical system is sampled for a given energy by computing the average state, finding the least energy state. Thus, this procedure can be general enough to solve other differential equations in physics and a useful tool to calculate the time-dependent properties of dynamical systems in order to understand the non-equilibrium behavior of statistical mechanical systems.
Más información
| Título de la Revista: | ENTROPY | 
| Volumen: | 22 | 
| Número: | 9 | 
| Editorial: | MDPI | 
| Fecha de publicación: | 2020 | 
| Página de inicio: | 916 | 
| DOI: | 10.3390/e22090916 | 
 Portal del Investigador
						 Portal del Investigador