Multiple bubbling for the exponential nonlinearity in the slightly supercritical case
Abstract
Let B denote the unit ball in â„2. We consider the slightly super-critical Gelfand problem for the p-Laplacian operator Δpu = div (|∇u|p-2∇u), - Δ2- εu = λ eu in B, u = 0 on ∂B, for small ε > 0. We show that if k ≥ 1 is given and λ > 0 is fixed and small, then there is a family of radial solutions exhibiting multiple blow-up as ε → 0 in the form of a superposition of k bubbles of different blow-up orders and shapes. Similar phenomena is found for the same problem involving the operator ΔN-ε in â„N, N ≥ 3.
Más información
Título según WOS: | Multiple bubbling for the exponential nonlinearity in the slightly supercritical case |
Título según SCOPUS: | Multiple bubbling for the exponential nonlinearity in the slightly supercritical case |
Título de la Revista: | COMMUNICATIONS ON PURE AND APPLIED ANALYSIS |
Volumen: | 5 |
Número: | 3 |
Editorial: | AMER INST MATHEMATICAL SCIENCES-AIMS |
Fecha de publicación: | 2006 |
Página de inicio: | 463 |
Página final: | 482 |
Idioma: | English |
Notas: | ISI, SCOPUS |