A probabilistic interpretation and stochastic particle approximations of the 3-dimensional Navier-Stokes equations
Abstract
We develop a probabilistic interpretation of local mild solutions of the three dimensional Navier-Stokes equation in the L p spaces, when the initial vorticity field is integrable. This is done by associating a generalized nonlinear diffusion of the McKean-Vlasov type with the solution of the corresponding vortex equation. We then construct trajectorial (chaotic) stochastic particle approximations of this nonlinear process. These results provide the first complete proof of convergence of a stochastic vortex method for the Navier-Stokes equation in three dimensions, and rectify the algorithm conjectured by Esposito and Pulvirenti in 1989. Our techniques rely on a fine regularity study of the vortex equation in the supercritical L p spaces, and on an extension of the classic McKean-Vlasov model, which incorporates the derivative of the stochastic flow of the nonlinear process to explain the vortex stretching phenomenon proper to dimension three.
Más información
Título según WOS: | A probabilistic interpretation and stochastic particle approximations of the 3-dimensional Navier-Stokes equations |
Título según SCOPUS: | A probabilistic interpretation and stochastic particle approximations of the 3-dimensional Navier-Stokes equations |
Título de la Revista: | PROBABILITY THEORY AND RELATED FIELDS |
Volumen: | 136 |
Número: | 1 |
Editorial: | Springer |
Fecha de publicación: | 2006 |
Página de inicio: | 102 |
Página final: | 156 |
Idioma: | English |
URL: | http://link.springer.com/10.1007/s00440-005-0477-9 |
DOI: |
10.1007/s00440-005-0477-9 |
Notas: | ISI, SCOPUS |