A POSTERIORI ERROR ESTIMATES FOR THE STATIONARY NAVIER-STOKES EQUATIONS WITH DIRAC MEASURES
Abstract
In two dimensions, we propose and analyze an a posteriori error estimator for finite element approximations of the stationary Navier-Stokes equations with singular sources on Lipschitz, but not necessarily convex, polygonal domains. Under a smallness assumption on the continuous and discrete solutions, we prove that the devised error estimator is reliable and locally efficient. We illustrate the theory with numerical examples.
Más información
| Título según WOS: | A POSTERIORI ERROR ESTIMATES FOR THE STATIONARY NAVIER-STOKES EQUATIONS WITH DIRAC MEASURES |
| Título de la Revista: | SIAM JOURNAL ON SCIENTIFIC COMPUTING |
| Volumen: | 42 |
| Número: | 3 |
| Editorial: | SIAM PUBLICATIONS |
| Fecha de publicación: | 2020 |
| Página de inicio: | A1860 |
| Página final: | A1884 |
| DOI: |
10.1137/19M1292436 |
| Notas: | ISI |