A POSTERIORI ERROR ESTIMATES FOR THE STATIONARY NAVIER-STOKES EQUATIONS WITH DIRAC MEASURES
Abstract
In two dimensions, we propose and analyze an a posteriori error estimator for finite element approximations of the stationary Navier-Stokes equations with singular sources on Lipschitz, but not necessarily convex, polygonal domains. Under a smallness assumption on the continuous and discrete solutions, we prove that the devised error estimator is reliable and locally efficient. We illustrate the theory with numerical examples.
Más información
Título según WOS: | A POSTERIORI ERROR ESTIMATES FOR THE STATIONARY NAVIER-STOKES EQUATIONS WITH DIRAC MEASURES |
Título de la Revista: | SIAM JOURNAL ON SCIENTIFIC COMPUTING |
Volumen: | 42 |
Número: | 3 |
Editorial: | SIAM PUBLICATIONS |
Fecha de publicación: | 2020 |
Página de inicio: | A1860 |
Página final: | A1884 |
DOI: |
10.1137/19M1292436 |
Notas: | ISI |