Asymptotic randomization of subgroup shifts by linear cellular automata
Abstract
Let double-struck M sign = ℕD be the positive orthant of a D-dimensional lattice and let (g, +) be a finite abelian group. Let ω ⊆ gdouble-struck M sign be a subgroup shift, and let μ be a Markov random field whose support is &. Let Φ: ω → ω be a linear cellular automaton. Under broad conditions on g, we show that the Cesaro average N-1 ∑n=0 N-1 Φn (μ) converges to a measure of maximal entropy for the shift action on ω. © 2005 Cambridge University Press.
Más información
| Título según WOS: | Asymptotic randomization of subgroup shifts by linear cellular automata |
| Título según SCOPUS: | Asymptotic randomization of subgroup shifts by linear cellular automata |
| Título de la Revista: | ERGODIC THEORY AND DYNAMICAL SYSTEMS |
| Volumen: | 26 |
| Número: | 4 |
| Editorial: | CAMBRIDGE UNIV PRESS |
| Fecha de publicación: | 2006 |
| Página de inicio: | 1203 |
| Página final: | 1224 |
| Idioma: | English |
| DOI: |
10.1017/S01433857060000216 |
| Notas: | ISI, SCOPUS |