Semi-linear singular elliptic equations with dependence on the gradient
Abstract
We establish the existence of a positive solution for the following non-variational equation {(- div (| x |- 2 a ∇ u) = | x |- 2 (a + 1) + c f (x, u, ∇ u),, in Ω; u = 0,, on ∂ Ω,) where the non-linearity f (x, t, ξ) belongs to a class of functions that are superlinear in the variable t and sublinear in the variable ξ. For this purpose we used an idea of a recent work by De Figueiredo et al. [D. De Figueiredo, M. Girardi, M. Matzeu, Semilinear elliptic equations with dependence on the gradient via mountain-pass techniques, Diff. Integral Equ. (in press)] and we established a new regularity result for a class of Singular Elliptic Equations. © 2005 Elsevier Ltd. All rights reserved.
Más información
Título según WOS: | Semi-linear singular elliptic equations with dependence on the gradient |
Título según SCOPUS: | Semi-linear singular elliptic equations with dependence on the gradient |
Título de la Revista: | NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS |
Volumen: | 65 |
Número: | 3 |
Editorial: | PERGAMON-ELSEVIER SCIENCE LTD |
Fecha de publicación: | 2006 |
Página de inicio: | 601 |
Página final: | 614 |
Idioma: | English |
URL: | http://linkinghub.elsevier.com/retrieve/pii/S0362546X05008412 |
DOI: |
10.1016/j.na.2005.09.034 |
Notas: | ISI, SCOPUS |