Intranasal Administration of Mesenchymal Stem Cell Secretome Reduces Hippocampal Oxidative Stress, Neuroinflammation and Cell Death, Improving the Behavioral Outcome Following Perinatal Asphyxia

Farfan, Nancy; Carril, Jaime; Redel, Martina; Zamorano, Marta; Araya, Maureen; Monzon, Estephania; Alvarado, Raul; Contreras, Norton; Tapia-Bustos, Andrea; Quintanilla, Maria Elena; Ezquer, Fernando; Valdes, Jose Luis; Israel, Yedy.; Herrera-Marschitz, Mario; Morales, Paola

Abstract

Perinatal Asphyxia (PA) is a leading cause of motor and neuropsychiatric disability associated with sustained oxidative stress, neuroinflammation, and cell death, affecting brain development. Based on a rat model of global PA, we investigated the neuroprotective effect of intranasally administered secretome, derived from human adipose mesenchymal stem cells (MSC-S), preconditioned with either deferoxamine (an hypoxia-mimetic) or TNF-alpha+IFN-gamma (pro-inflammatory cytokines). PA was generated by immersing fetus-containing uterine horns in a water bath at 37 degrees C for 21 min. Thereafter, 16 mu L of MSC-S (containing 6 mu g of protein derived from 2 x 10(5) preconditioned-MSC), or vehicle, were intranasally administered 2 h after birth to asphyxia-exposed and control rats, evaluated at postnatal day (P) 7. Alternatively, pups received a dose of either preconditioned MSC-S or vehicle, both at 2 h and P7, and were evaluated at P14, P30, and P60. The preconditioned MSC-S treatment (i) reversed asphyxia-induced oxidative stress in the hippocampus (oxidized/reduced glutathione); (ii) increased antioxidative Nuclear Erythroid 2-Related Factor 2 (NRF2) translocation; (iii) increased NQO1 antioxidant protein; (iv) reduced neuroinflammation (decreasing nuclearNF-kappa B/p65 levels and microglial reactivity); (v) decreased cleaved-caspase-3 cell-death; (vi) improved righting reflex, negative geotaxis, cliff aversion, locomotor activity, anxiety, motor coordination, and recognition memory. Overall, the study demonstrates that intranasal administration of preconditioned MSC-S is a novel therapeutic strategy that prevents the long-term effects of perinatal asphyxia.

Más información

Título según WOS: Intranasal Administration of Mesenchymal Stem Cell Secretome Reduces Hippocampal Oxidative Stress, Neuroinflammation and Cell Death, Improving the Behavioral Outcome Following Perinatal Asphyxia
Título de la Revista: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES
Volumen: 21
Número: 20
Editorial: MDPI
Fecha de publicación: 2020
DOI:

10.3390/IJMS21207800

Notas: ISI