Applications of a Brauer theorem in the nonnegative inverse eigenvalue problem
Abstract
A result by Brauer, which shows how to modify one single eigenvalue of a matrix without changing any of the remaining eigenvalues, plays a relevant role in the study of the nonnegative inverse eigenvalue problem (NIEP). Perfect, in a long time ignored paper (1955) presents an extension of this result, which shows how to modify r eigenvalues of a matrix of order n, r < n, via a rank-r perturbation, without changing any of the n - r remaining eigenvalues. By using this extension, Perfect gives a realizability criterion for the real NIEP, which is not contained in Soto's realizability criterion. In this work, by extending Perfect's result, we give a new realizability criterion for the real NIEP, which contains Soto's criterion. Thus, this new realizability criterion appears to be the most general sufficient condition for the real NIEP so far. We also contribute to the solution of the symmetric NIEP for n = 5. © 2006 Elsevier Inc. All rights reserved.
Más información
Título según WOS: | Applications of a Brauer theorem in the nonnegative inverse eigenvalue problem |
Título según SCOPUS: | Applications of a Brauer theorem in the nonnegative inverse eigenvalue problem |
Título de la Revista: | LINEAR ALGEBRA AND ITS APPLICATIONS |
Volumen: | 416 |
Número: | 02-mar |
Editorial: | Elsevier Science Inc. |
Fecha de publicación: | 2006 |
Página de inicio: | 844 |
Página final: | 856 |
Idioma: | English |
URL: | http://linkinghub.elsevier.com/retrieve/pii/S0024379506000140 |
DOI: |
10.1016/j.laa.2005.12.026 |
Notas: | ISI, SCOPUS |