Minimal configurations for the Frenkel-Kontorova model on a quasicrystal
Abstract
In this paper, we consider the Frenkel-Kontorova model of a one dimensional chain of atoms submitted to a potential. This potential splits into an interaction potential and a potential induced by an underlying substrate which is a quasicrystal. Under standard hypotheses, we show that every minimal configuration has a rotation number, that the rotation number varies continuously with the minimal configuration, and that every non negative real number is the rotation number of a minimal configuration. This generalizes well known results obtained by S. Aubry and P.Y. le Daeron in the case of a crystalline substrate.
Más información
Título según WOS: | Minimal configurations for the Frenkel-Kontorova model on a quasicrystal |
Título según SCOPUS: | Minimal configurations for the Frenkel-Kontorova model on a quasicrystal |
Título de la Revista: | COMMUNICATIONS IN MATHEMATICAL PHYSICS |
Volumen: | 265 |
Número: | 1 |
Editorial: | Springer |
Fecha de publicación: | 2006 |
Página de inicio: | 165 |
Página final: | 188 |
Idioma: | English |
URL: | http://link.springer.com/10.1007/s00220-006-1531-x |
DOI: |
10.1007/s00220-006-1531-x |
Notas: | ISI, SCOPUS |