Asymptotic selection of viscosity equilibria of semilinear evolution equations by the introduction of a slowly vanishing term

Alvarez, F.; Cabot A.

Abstract

The behavior at infinity is investigated of global solutions to some nonautonomous semilinear evolution equations with conservative and convex nonlinearities. It is proved that the trajectories converge to viscosity stationary solutions as time goes to infinity, that is, they evolve towards stationary solutions that are minimal with respect to a generalized viscosity criterion. Hierarchical viscosity selections and applications to specific nonlinear PDE are given.

Más información

Título según WOS: Asymptotic selection of viscosity equilibria of semilinear evolution equations by the introduction of a slowly vanishing term
Título según SCOPUS: Asymptotic selection of viscosity equilibria of semilinear evolution equations by the introduction of a slowly vanishing term
Título de la Revista: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS
Volumen: 15
Número: 3
Editorial: AMER INST MATHEMATICAL SCIENCES-AIMS
Fecha de publicación: 2006
Página de inicio: 921
Página final: 938
Idioma: English
Notas: ISI, SCOPUS