Improving the Accuracy of Action Classification Using View-Dependent Context Information
Abstract
This paper presents a human action recognition system that decomposes the task in two subtasks. First, a view-independent classifier, shared between the multiple views to analyze, is applied to obtain an initial guess of the posterior distribution of the performed action. Then, this posterior distribution is combined with view based knowledge to improve the action classification. This allows to reuse the view-independent component when a new view has to be analyzed, needing to only specify the view dependent knowledge. An example of the application of the system into an smart home domain is discussed.
Más información
Título según WOS: | ID WOS:000297712800017 Not found in local WOS DB |
Título de la Revista: | BIO-INSPIRED SYSTEMS AND APPLICATIONS: FROM ROBOTICS TO AMBIENT INTELLIGENCE, PT II |
Volumen: | 6679 |
Editorial: | SPRINGER INTERNATIONAL PUBLISHING AG |
Fecha de publicación: | 2011 |
Página de inicio: | 136 |
Página final: | 143 |
Notas: | ISI |