Periodic solutions of second order differential equations in Banach spaces
Abstract
We use operator-valued Fourier multiplier theorems to study second order differential equations in Banach spaces. We establish maximal regularity results in Lp and Cs for strong solutions of a complete second order equation. In the second part, we study mild solutions for the second order problem. Two types of mild solutions are considered. When the operator A involved is the generator of a strongly continuous cosine function, we give characterizations in terms of Fourier multipliers and spectral properties of the cosine function. The results obtained are applied to elliptic partial differential operators.
Más información
Título según WOS: | Periodic solutions of second order differential equations in Banach spaces |
Título según SCOPUS: | Periodic solutions of second order differential equations in Banach spaces |
Título de la Revista: | MATHEMATISCHE ZEITSCHRIFT |
Volumen: | 253 |
Número: | 3 |
Editorial: | SPRINGER HEIDELBERG |
Fecha de publicación: | 2006 |
Página de inicio: | 489 |
Página final: | 514 |
Idioma: | English |
URL: | http://link.springer.com/10.1007/s00209-005-0919-1 |
DOI: |
10.1007/s00209-005-0919-1 |
Notas: | ISI, SCOPUS |