On the heteroclinic connection problem for multi-well gradient systems

Zuniga, Andres; Sternberg, Peter

Abstract

We revisit the existence problem of heteroclinic connections in RN associated with Hamiltonian systems involving potentials W : R-N -> R having several global minima. Under very mild assumptions on W we present a simple variational approach to first find geodesics minimizing length of curves joining any two of the potential wells, where length is computed with respect to a degenerate metric having conformal factor root W. Then we show that when such a minimizing geodesic avoids passing through other wells of the potential at intermediate times, it gives rise to a heteroclinic connection between the two wells. This work improves upon the approach of [22] and represents a more geometric alternative to the approaches of e.g. [5,10,14,17] for finding such connections. (C) 2016 Elsevier Inc. All rights reserved.

Más información

Título según WOS: ID WOS:000381537800009 Not found in local WOS DB
Título de la Revista: JOURNAL OF DIFFERENTIAL EQUATIONS
Volumen: 261
Número: 7
Editorial: ACADEMIC PRESS INC ELSEVIER SCIENCE
Fecha de publicación: 2016
Página de inicio: 3987
Página final: 4007
DOI:

10.1016/j.jde.2016.06.010

Notas: ISI