MOGPTK: The multi-output Gaussian process toolkit

de Wolff, Taco; Cuevas, Alejandro; Tobar, Felipe

Abstract

We present MOGPTK, a Python package for multi-channel data modelling using Gaussian processes (GP). The aim of this toolkit is to make multi-output GP (MOGP) models accessible to researchers, data scientists, and practitioners alike. MOGPTK uses a Python front-end and relies on the PyTorch suite, thus enabling GPU-accelerated training. The toolkit facilitates implementing the entire pipeline of GP modelling, including data loading, parameter initialization, model learning, parameter interpretation, up to data imputation and extrapolation. MOGPTK implements the main multi-output covariance kernels from literature, as well as spectral-based parameter initialization strategies. The source code, tutorials and examples in the form of Jupyter notebooks, together with the API documentation, can be found in this GitHub repository: https://github.com/GAMES-UChile/mogptk. (c) 2020 Elsevier B.V. All rights reserved.

Más información

Título según WOS: MOGPTK: The multi-output Gaussian process toolkit
Título de la Revista: NEUROCOMPUTING
Volumen: 424
Editorial: Elsevier
Fecha de publicación: 2021
Página de inicio: 49
Página final: 53
DOI:

10.1016/j.neucom.2020.09.085

Notas: ISI