Multimodel Kalman filtering for adaptive nonuniformity correction in infrared sensors

Pezoa, JE; Hayat, MM; Torres, SN; Rahman MS

Abstract

We present an adaptive technique for the estimation of nonuniformity parameters of infrared focal-plane arrays that is robust with respect to changes and uncertainties in scene and sensor characteristics. The proposed algorithm is based on using a bank of Kalman filters in parallel. Each filter independently estimates state variables comprising the gain and the bias matrices of the sensor, according to its own dynamic-model parameters. The supervising component of the algorithm then generates the final estimates of the state variables by forming a weighted superposition of all the estimates rendered by each Kalman filter. The weights are computed and updated iteratively, according to the a posteriori-likelihood principle. The performance of the estimator and its ability to compensate for fixed-pattern noise is tested using both simulated and real data obtained from two cameras operating in the mid- and long-wave infrared regime. © 2006 Optical Society of America.

Más información

Título según WOS: Multimodel Kalman filtering for adaptive nonuniformity correction in infrared sensors
Título según SCOPUS: Multimodel Kalman filtering for adaptive nonuniformity correction in infrared sensors
Título de la Revista: JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION
Volumen: 23
Número: 6
Editorial: OPTICAL SOC AMER
Fecha de publicación: 2006
Página de inicio: 1282
Página final: 1291
Idioma: English
URL: http://www.opticsinfobase.org/abstract.cfm?URI=josaa-23-6-1282
DOI:

10.1364/JOSAA.23.001282

Notas: ISI, SCOPUS