Manufacturing of Ultrasound-and MRI-Compatible Aortic Valves Using 3D Printing for Analysis and Simulation

Joao Filipe Fernandes, Yohan Noh, Sergio Uribe, Jesus Urbina, Julio Sotelo, Ronak Rajani, Pablo Lamata, Kawal Rhode

Abstract

Valve-related heart disease affects 27 million patients worldwide and is associated with inflammation, fibrosis and calcification which progressively lead to organ structure change. Aortic stenosis is the most common valve pathology with controversies regarding its optimal management, such as the timing of valve replacement. Therefore, there is emerging demand for analysis and simulation of valves to help researchers and companies to test novel approaches. This paper describes how to build ultrasound-and MRI-compatible aortic valves compliant phantoms with a two-part mold technique using 3D printing. The choice of the molding material, PVA, was based on its material properties and experimentally tested dissolving time. Different diseased valves were then manufactured with ecoflex silicone, a commonly used tissuemimicking material. The valves were mounted with an external support and tested in physiological flow conditions. Flow images were obtained with both ultrasound and MRI, showing physiologically plausible anatomy and function of the valves. The simplicity of the manufacturing process and low cost of materials should enable an easy adoption of proposed methodology. Future research will focus on the extension of the method to cover a larger anatomical area (eg aortic arch) and the use of this phantom to validate the non-invasive assessment of blood pressure differences.

Más información

Editorial: Springer Nature
Fecha de publicación: 2020