Characterizing Existence of Minimizers and Optimality to Nonconvex Quadratic Integrals

Flores-Bazan, Fabian; Gonzalez-Valencia, Luis

Abstract

Quadratic functions play an important role in applied mathematics. In this paper, we consider the problem of minimizing the integral of a (not necessarily convex) quadratic function in a bounded subset of nonnegative integrable functions defined on a finite-dimensional space that is not compact with respect to any (locally convex) topology in the space of integrable functions. We establish a complete description about the existence or nonexistence of solution in terms of the (strict) copositivity of the matrix involved in the integrand. In addition, we characterize optimality via the Hamiltonian function.

Más información

Título según WOS: Characterizing Existence of Minimizers and Optimality to Nonconvex Quadratic Integrals
Título de la Revista: JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
Volumen: 188
Número: 2
Editorial: SPRINGER/PLENUM PUBLISHERS
Fecha de publicación: 2021
Página de inicio: 497
Página final: 522
DOI:

10.1007/S10957-020-01794-8

Notas: ISI