Enhanced resistance to bacterial infection byErwinia carotovora subsp.atroseptica in transgenic potato plants expressing the attacin or the cecropin SB-37 genes

Patricio Arce; Mauricio Moreno; Mónica Gutierrez; Marlene Gebauer; Paola Den'Orto; Hebert Torres; Ivette Acuña; Pauline Oliger; alejandro venegas; Xavier Jordana; Julio Kalazich; Loreto Holuigue

Keywords: Antibacterial, bacterial resistance, plant transformation, blackleg, soft rot

Abstract

Blackleg and soft rot diseases, caused by the bacteriumErwinia carotovora, are among the diseases that cause important losses in culture and storage of potato. In this paper, we introduced bacterial resistance into potato, via genes encoding for proteins with antibacterial activity. For this purpose, potato clones were transformed either with the gene encoding the acidic attacin protein fromHyalophora cecropia, or with the gene encoding the cecropin analog peptide SB37. These clones were evaluated for soft rot and blackleg resistance, after inoculation with the bacterial strainErwinia carotovora subsp.atroseptica T7. Results reported in this paper indicate that a considerable percentage of the potato clones (15–22%) showed increased resistance to bacterial infection, revealed by reduced severity of blackleg or soft rot symptoms. Expression of the transgenes was demonstrated in some of the clones by Northern blot analysis. This is the first report indicating that expression of the gene encoding for an attacin protein and for the cecropin SB-37 peptide in transgenic potato confers increased resistance to bacterial infection.

Más información

Título de la Revista: AMERICAN JOURNAL OF POTATO RESEARCH
Volumen: 76
Editorial: Springer
Fecha de publicación: 1999
Página de inicio: 169
Página final: 177
Idioma: Inglés
URL: https://doi.org/10.1007/BF02853582