On a Kinetic Fitzhugh-Nagumo Model of Neuronal Network
Abstract
We investigate existence and uniqueness of solutions of a McKean-Vlasov evolution PDE representing the macroscopic behaviour of interacting Fitzhugh-Nagumo neurons. This equation is hypoelliptic, nonlocal and has unbounded coefficients. We prove existence of a solution to the evolution equation and non trivial stationary solutions. Moreover, we demonstrate uniqueness of the stationary solution in the weakly nonlinear regime. Eventually, using a semigroup factorisation method, we show exponential nonlinear stability in the small connectivity regime.
Más información
Título según WOS: | ID WOS:000371387000008 Not found in local WOS DB |
Título de la Revista: | COMMUNICATIONS IN MATHEMATICAL PHYSICS |
Volumen: | 342 |
Número: | 3 |
Editorial: | Springer |
Fecha de publicación: | 2016 |
Página de inicio: | 1001 |
Página final: | 1042 |
DOI: |
10.1007/s00220-015-2556-9 |
Notas: | ISI |