On the number of limit cycles in a predator prey model with non-monotonic functional response
Abstract
In this work we analyze a Gause type predator-prey model with a non-monotonic functional response and we show that it has two limit cycles encircling an unique singularity at the interior of the first quadrant, the innermost unstable and the outermost stable, completing the results obtained in previous paper [12, 17, 26, 28]. Moreover, using the Poisson bracket we give a proof, shorter than the ones found in the literature, for determining the type of a cusp point of a singularity at the first quadrant.
Más información
Título según WOS: | On the number of limit cycles in a predator prey model with non-monotonic functional response |
Título según SCOPUS: | On the number of limit cycles in a predator prey model with non-monotonic functional response |
Título de la Revista: | DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B |
Volumen: | 6 |
Número: | 3 |
Editorial: | AMER INST MATHEMATICAL SCIENCES-AIMS |
Fecha de publicación: | 2006 |
Página de inicio: | 525 |
Página final: | 534 |
Idioma: | English |
Notas: | ISI, SCOPUS |