ALMA Survey of Orion Planck Galactic Cold Clumps (ALMASOP). II. Survey Overview: A First Look at 1.3 mm Continuum Maps and Molecular Outflows
Abstract
Planck Galactic Cold Clumps (PGCCs) are considered to be the ideal targets to probe the early phases of star formation. We have conducted a survey of 72 young dense cores inside PGCCs in the Orion complex with the Atacama Large Millimeter/submillimeter Array (ALMA) at 1.3 mm (band 6) using three different configurations (resolutions similar to 035, 10, and 70) to statistically investigate their evolutionary stages and substructures. We have obtained images of the 1.3 mm continuum and molecular line emission ((CO)-C-12, and SiO) at an angular resolution of similar to 035 (similar to 140 au) with the combined arrays. We find 70 substructures within 48 detected dense cores with median dust mass similar to 0.093 M and deconvolved size similar to 027. Dense substructures are clearly detected within the central 1000 au of four candidate prestellar cores. The sizes and masses of the substructures in continuum emission are found to be significantly reduced with protostellar evolution from Class 0 to Class I. We also study the evolutionary change in the outflow characteristics through the course of protostellar mass accretion. A total of 37 sources exhibit CO outflows, and 20 (>50%) show high-velocity jets in SiO. The CO velocity extents (Delta Vs) span from 4 to 110 km s(-1) with outflow cavity opening angle width at 400 au ranging from [Theta(obs)](400) similar to 06-39, which corresponds to 334-1257. For the majority of the outflow sources, the Delta Vs show a positive correlation with [Theta(obs)](400), suggesting that as protostars undergo gravitational collapse, the cavity opening of a protostellar outflow widens and the protostars possibly generate more energetic outflows.
Más información
Título según WOS: | ALMA Survey of Orion Planck Galactic Cold Clumps (ALMASOP). II. Survey Overview: A First Look at 1.3 mm Continuum Maps and Molecular Outflows |
Título de la Revista: | ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES |
Volumen: | 251 |
Número: | 2 |
Editorial: | IOP PUBLISHING LTD |
Fecha de publicación: | 2020 |
DOI: |
10.3847/1538-4365/ABBA26 |
Notas: | ISI |