Epoxidation of Fatty Acid Methyl Esters Derived from Algae Biomass to Develop Sustainable Bio-Based Epoxy Resins
Abstract
The objective of this research was to investigate the development of epoxides from Chlorella vulgaris lipids to obtain a novel bio-based resin. The process involved the production of fatty acid methyl esters (FAMEs) by in situ transesterification of microalgal biomass, followed by epoxidation of the FAMEs to obtain bioresin. During the FAME production process, an assessment was made of the main factors affecting the production of unsaturated fatty acid methyl esters (UFAMEs), such as catalyst dosage and methanol:hexane volume ratio. For step epoxidation, an evaluation of the catalyst concentration, temperature and formic acid:hydrogen peroxide ratio was made. From the results obtained, UFAME production was maximized using 20 wt% of catalyst dosage and a volume ratio of 1:2 (v/v, methanol:hexane). Then, in the epoxidation stage, a higher yield was obtained using 1 wt% of catalyst with a volume ratio of 1:1 and maintaining a temperature of 70 degrees C. The bioresin was blended with neat epoxy resin (DGEBA) and cured with tetraethylenepentamine (TEPA). Bio-based resin was characterized via Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA) to evaluate this material as an alternative source for oleochemistry.
Más información
Título según WOS: | Epoxidation of Fatty Acid Methyl Esters Derived from Algae Biomass to Develop Sustainable Bio-Based Epoxy Resins |
Título de la Revista: | POLYMERS |
Volumen: | 12 |
Número: | 10 |
Editorial: | MDPI |
Fecha de publicación: | 2020 |
DOI: |
10.3390/POLYM12102313 |
Notas: | ISI |