Singular perturbations of integro-differential equations
Abstract
We study the singular perturbation problem{A formula is presented}for the integro-differential equation{A formula is presented}in a Banach space, when ε{lunate} → 0+. We assume that A is the generator of a strongly continuous cosine family. Then under some regularity conditions on the scalar-valued kernel K we show that problem (Eε{lunate}) has a unique solution uε{lunate}(t) for each small ε{lunate} > 0. Moreover uε{lunate}(t) converges to u(t) as ε{lunate} → 0+, the unique solution of equation (E). © 2005 Elsevier Inc. All rights reserved.
Más información
Título según WOS: | Singular perturbations of integro-differential equations |
Título según SCOPUS: | Singular perturbations of integro-differential equations |
Título de la Revista: | APPLIED MATHEMATICS AND COMPUTATION |
Volumen: | 175 |
Número: | 2 |
Editorial: | Elsevier Science Inc. |
Fecha de publicación: | 2006 |
Página de inicio: | 1582 |
Página final: | 1595 |
Idioma: | English |
URL: | http://linkinghub.elsevier.com/retrieve/pii/S0096300305007162 |
DOI: |
10.1016/j.amc.2005.09.005 |
Notas: | ISI, SCOPUS |