Singular perturbations of integro-differential equations

Lizama C.; Prado, H

Abstract

We study the singular perturbation problem{A formula is presented}for the integro-differential equation{A formula is presented}in a Banach space, when ε{lunate} → 0+. We assume that A is the generator of a strongly continuous cosine family. Then under some regularity conditions on the scalar-valued kernel K we show that problem (Eε{lunate}) has a unique solution uε{lunate}(t) for each small ε{lunate} > 0. Moreover uε{lunate}(t) converges to u(t) as ε{lunate} → 0+, the unique solution of equation (E). © 2005 Elsevier Inc. All rights reserved.

Más información

Título según WOS: Singular perturbations of integro-differential equations
Título según SCOPUS: Singular perturbations of integro-differential equations
Título de la Revista: APPLIED MATHEMATICS AND COMPUTATION
Volumen: 175
Número: 2
Editorial: Elsevier Science Inc.
Fecha de publicación: 2006
Página de inicio: 1582
Página final: 1595
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0096300305007162
DOI:

10.1016/j.amc.2005.09.005

Notas: ISI, SCOPUS