The spectra of some trees and bounds for the largest eigenvalue of any tree
Abstract
Let T be an unweighted tree of k levels such that in each level the vertices have equal degree. Let n k-j+1 and d k-j+1 be the number of vertices and the degree of them in the level j. We find the eigenvalues of the adjacency matrix and Laplacian matrix of T for the case of two vertices in level 1 (n k = 2), including results concerning to their multiplicity. They are the eigenvalues of leading principal submatrices of nonnegative symmetric tridiagonal matrices of order k × k. The codiagonal entries for these matrices are dj-1, 2 ≤ j ≤ k, while the diagonal entries are 0, ..., 0, ±1, in the case of the adjacency matrix, and d 1, d 2, ..., d k-1, d k ± 1, in the case of the Laplacian matrix. Finally, we use these results to find improved upper bounds for the largest eigenvalue of the adjacency matrix and of the Laplacian matrix of any given tree. © 2005 Elsevier Inc. All rights reserved.
Más información
Título según WOS: | The spectra of some trees and bounds for the largest eigenvalue of any tree |
Título según SCOPUS: | The spectra of some trees and bounds for the largest eigenvalue of any tree |
Título de la Revista: | LINEAR ALGEBRA AND ITS APPLICATIONS |
Volumen: | 414 |
Número: | 1 |
Editorial: | Elsevier Science Inc. |
Fecha de publicación: | 2006 |
Página de inicio: | 199 |
Página final: | 217 |
Idioma: | English |
URL: | http://linkinghub.elsevier.com/retrieve/pii/S0024379505004568 |
DOI: |
10.1016/j.laa.2005.09.018 |
Notas: | ISI, SCOPUS |