On the spectra of certain rooted trees

Rojo, O

Abstract

Let T be an unweighted tree with vertex root v which is the union of two trees T1=(V1,E1), T2=(V2,E2) such that V 1 ∩ V 2 = {v} and T1 and T2 have the property that the vertices in each of their levels have equal degree. We characterize completely the eigenvalues of the adjacency matrix and of the Laplacian matrix of T. They are the eigenvalues of symmetric tridiagonal matrices whose entries are given in terms of the vertex degrees. Moreover, we give some results about the multiplicity of the eigenvalues. Applications to some particular trees are developed. © 2005 Elsevier Inc. All rights reserved.

Más información

Título según WOS: On the spectra of certain rooted trees
Título según SCOPUS: On the spectra of certain rooted trees
Título de la Revista: LINEAR ALGEBRA AND ITS APPLICATIONS
Volumen: 414
Número: 1
Editorial: Elsevier Science Inc.
Fecha de publicación: 2006
Página de inicio: 218
Página final: 243
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S002437950500457X
DOI:

10.1016/j.laa.2005.09.019

Notas: ISI, SCOPUS