A note on Jacobians of quasiplatonic Riemann surfaces with complex multiplication
Abstract
Let m >= 6 be an even integer. In this short note we prove that the Jacobian variety of a quasiplatonic Riemann surface with associated group of automorphisms isomorphic to C-2(2) x 2 C-m admits complex multiplication. We then extend this result to provide a criterion under which the Jacobian variety of a quasiplatonicRiemann surface admits complexmultiplication.
Más información
| Título según WOS: | A note on Jacobians of quasiplatonic Riemann surfaces with complex multiplication |
| Título de la Revista: | GEOMETRIAE DEDICATA |
| Editorial: | Springer |
| Fecha de publicación: | 2020 |
| DOI: |
10.1007/s10711-020-00577-9 |
| Notas: | ISI |