A note on Jacobians of quasiplatonic Riemann surfaces with complex multiplication
Abstract
Let m >= 6 be an even integer. In this short note we prove that the Jacobian variety of a quasiplatonic Riemann surface with associated group of automorphisms isomorphic to C-2(2) x 2 C-m admits complex multiplication. We then extend this result to provide a criterion under which the Jacobian variety of a quasiplatonicRiemann surface admits complexmultiplication.
Más información
Título según WOS: | A note on Jacobians of quasiplatonic Riemann surfaces with complex multiplication |
Título de la Revista: | GEOMETRIAE DEDICATA |
Editorial: | Springer |
Fecha de publicación: | 2020 |
DOI: |
10.1007/s10711-020-00577-9 |
Notas: | ISI |