Dynamic time series smoothing for symbolic interval data applied to neuroscience
Abstract
This work aimed to appraise a multivariate time series, high-dimensionality data-set, presented as intervals using a Symbolic Data Analysis (SDA) approach. SDA reduces data dimensionality, considering the complexity of the model information through a set-valued (interval or multi-valued). Additionally, Dynamic Linear Models (DLM) are distinguished by modeling univariate or multivariate time series in the presence of non-stationarity, structural changes and irregular patterns. We considered neurophysiological (EEG) data associated with experimental manipulation of verticality perception in humans, using transcranial electrical stimulation. The innovation of the present work is centered on use of a dynamic linear model with SDA methodology, and SDA applications for analyzing EEG data. (C) 2019 Elsevier Inc. All rights reserved.
Más información
Título según WOS: | ID WOS:000517659200024 Not found in local WOS DB |
Título de la Revista: | INFORMATION SCIENCES |
Volumen: | 517 |
Editorial: | Elsevier Science Inc. |
Fecha de publicación: | 2020 |
Página de inicio: | 415 |
Página final: | 426 |
DOI: |
10.1016/j.ins.2019.12.026 |
Notas: | ISI |