High-frequency chaotic solutions for a slowly varying dynamical system

Felmer P.; Martínez, S.; Tanaka K.

Abstract

In this article we study the asymptotic dynamics of highly oscillatory solutions for the unbalanced Allen-Cahn equation with a slowly varying coefficient. We describe the underlying structure of these solutions through a function we call the adiabatic profile, which accounts for the asymptotic area covered by the solutions in the phase space. In finite intervals, we construct solutions given any adiabatic profile. In the case of a periodic coefficient we show that the system has chaotic behavior by constructing high-frequency complex solutions which can be characterized by a bi-infinite sequence of real numbers in [c1,c2] ∪ {0} (0 <c1 <c 2). © 2006 Cambridge University Press.

Más información

Título según WOS: High-frequency chaotic solutions for a slowly varying dynamical system
Título según SCOPUS: High-frequency chaotic solutions for a slowly varying dynamical system
Título de la Revista: ERGODIC THEORY AND DYNAMICAL SYSTEMS
Volumen: 26
Número: 2
Editorial: CAMBRIDGE UNIV PRESS
Fecha de publicación: 2006
Página de inicio: 379
Página final: 407
Idioma: English
URL: http://www.journals.cambridge.org/abstract_S0143385705000416
DOI:

10.1017/S0143385705000416

Notas: ISI, SCOPUS