Astaxanthin Counteracts Excitotoxicity and Reduces the Ensuing Increases in Calcium Levels and Mitochondrial Reactive Oxygen Species Generation
Abstract
Astaxanthin (ASX) is a carotenoid pigment with strong antioxidant properties. We have reported previously that ASX protects neurons from the noxious effects of amyloid-beta peptide oligomers, which promote excessive mitochondrial reactive oxygen species (mROS) production and induce a sustained increase in cytoplasmic Ca(2+)concentration. These properties make ASX a promising therapeutic agent against pathological conditions that entail oxidative and Ca(2+)dysregulation. Here, we studied whether ASX protects neurons from N-methyl-D-aspartate (NMDA)-induced excitotoxicity, a noxious process which decreases cellular viability, alters gene expression and promotes excessive mROS production. Incubation of the neuronal cell line SH-SY5Y with NMDA decreased cellular viability and increased mitochondrial superoxide production; pre-incubation with ASX prevented these effects. Additionally, incubation of SH-SY5Y cells with ASX effectively reduced the basal mROS production and prevented hydrogen peroxide-induced cell death. In primary hippocampal neurons, transfected with a genetically encoded cytoplasmic Ca(2+)sensor, ASX also prevented the increase in intracellular Ca(2+)concentration induced by NMDA. We suggest that, by preventing the noxious mROS and Ca(2+)increases that occur under excitotoxic conditions, ASX could be useful as a therapeutic agent in neurodegenerative pathologies that involve alterations in Ca(2+)homeostasis and ROS generation.
Más información
Título según WOS: | Astaxanthin Counteracts Excitotoxicity and Reduces the Ensuing Increases in Calcium Levels and Mitochondrial Reactive Oxygen Species Generation |
Título de la Revista: | Marine Drugs |
Volumen: | 18 |
Número: | 6 |
Editorial: | Multidisciplinary Digital Publishing Institute (MDPI) |
Fecha de publicación: | 2020 |
DOI: |
10.3390/MD18060335 |
Notas: | ISI |