Integrable systems and the boundary dynamics of higher spin gravity on AdS(3)

Ojeda, Emilio; Perez, Alfredo

Abstract

We introduce a new set of boundary conditions for three-dimensional higher spin gravity with gauge group SL(3, Double-struck capital R) x SL(3, Double-struck capital R), where its dynamics at the boundary is described by the members of the modified Boussinesq integrable hierarchy. In the asymptotic region the gauge fields are written in the diagonal gauge, where the excitations go along the generators of the Cartan subalgebra of sl(3, Double-struck capital R) circle plus sl(3, Double-struck capital R). We show that the entire integrable structure of the modified Boussinesq hierarchy, i.e., the phase space, the Poisson brackets and the infinite number of commuting conserved charges, are obtained from the asymptotic structure of the higher spin theory. Furthermore, its known relation with the Boussinesq hierarchy is inherited from our analysis once the asymptotic conditions are re-expressed in the highest weight gauge. Hence, the Miura map is recovered from a purely geometric construction in the bulk. Black holes that fit within our boundary conditions, the Hamiltonian reduction at the boundary, and the generalization to higher spin gravity with gauge group SL(N, Double-struck capital R) x SL(N, Double-struck capital R) are also discussed.

Más información

Título según WOS: Integrable systems and the boundary dynamics of higher spin gravity on AdS(3)
Título de la Revista: JOURNAL OF HIGH ENERGY PHYSICS
Número: 11
Editorial: Springer
Fecha de publicación: 2020
DOI:

10.1007/JHEP11(2020)089

Notas: ISI