Collapsing steady states of the Keller-Segel system

Del Pino M.; Wei, JC

Abstract

We consider the boundary value problem: which is equivalent to the stationary Keller-Segel system from chemotaxis. Here is a smooth and bounded domain. We show that given any two non-negative integers k, l with k + l ≥ 1, for ε sufficiently small, there exists a solution uε for which develops asymptotically k interior Dirac deltas with weight 8π and l boundary deltas with weight 4π. Location of blow-up points is characterized explicitly in terms of Green's function of the Neumann problem. © 2006 IOP Publishing Ltd and London Mathematical Society.

Más información

Título según WOS: Collapsing steady states of the Keller-Segel system
Título según SCOPUS: Collapsing steady states of the Keller-Segel system
Título de la Revista: NONLINEARITY
Volumen: 19
Número: 3
Editorial: IOP PUBLISHING LTD
Fecha de publicación: 2006
Página de inicio: 661
Página final: 684
Idioma: English
URL: http://stacks.iop.org/0951-7715/19/i=3/a=007?key=crossref.29eb9d3f4e324868459b3621d9a0ec5b
DOI:

10.1088/0951-7715/19/3/007

Notas: ISI, SCOPUS