On the spectral radius and energy of digraphs
Abstract
Let D be a simple digraph with eigenvalues z(1), z(2),...,z(n). The energy of D is defined as E(D) = Sigma(n)(i=n) vertical bar Re(z(i))vertical bar, where Re(z(i)) is the real part of the eigenvalue z(i). In this paper, a lower bound for the spectral radius of D will be established based on the number of subgraphs (P-3)over-left-right-arrow in D, improving some of the lower bounds that appear in the literature. Furthermore, this result allows us to obtain an upper bound for the energy of D.
Más información
Título según WOS: | On the spectral radius and energy of digraphs |
Título de la Revista: | LINEAR MULTILINEAR ALGEBRA |
Editorial: | TAYLOR & FRANCIS LTD |
Fecha de publicación: | 2021 |
DOI: |
10.1080/03081087.2021.1899109 |
Notas: | ISI |