On the spectral radius and energy of digraphs

Carmona, Juan R.; Rodriguez, Jonnathan

Abstract

Let D be a simple digraph with eigenvalues z(1), z(2),...,z(n). The energy of D is defined as E(D) = Sigma(n)(i=n) vertical bar Re(z(i))vertical bar, where Re(z(i)) is the real part of the eigenvalue z(i). In this paper, a lower bound for the spectral radius of D will be established based on the number of subgraphs (P-3)over-left-right-arrow in D, improving some of the lower bounds that appear in the literature. Furthermore, this result allows us to obtain an upper bound for the energy of D.

Más información

Título según WOS: On the spectral radius and energy of digraphs
Título de la Revista: LINEAR MULTILINEAR ALGEBRA
Editorial: TAYLOR & FRANCIS LTD
Fecha de publicación: 2021
DOI:

10.1080/03081087.2021.1899109

Notas: ISI