Non-Newtonian blood flow dynamics in a right internal carotid artery with a saccular aneurysm

Valencia, A; Zarate, A; Gálvez M.; Badilla, L

Abstract

Flow dynamics plays an important role in the pathogenesis and treatment of cerebral aneurysms. The temporal and spatial variations of wall shear stress in the aneurysm are hypothesized to be correlated with its growth and rupture. In addition, the assessment of the velocity field in the aneurysm dome and neck is important for the correct placement of endovascular coils. This work describes the flow dynamics in a patient-specific model of carotid artery with a saccular aneurysm under Newtonian and non-Newtonian fluid assumptions. The model was obtained from three-dimensional rotational angiography image data and blood flow dynamics was studied under physiologically representative waveform of inflow. The three-dimensional continuity and momentum equations for incompressible and unsteady laminar flow were solved with a commercial software using non-structured fine grid with 283 115 tetrahedral elements. The intra-aneurysmal flow shows complex vortex structure that change during one pulsatile cycle. The effect of the non-Newtonian properties of blood on the wall shear stress was important only in the arterial regions with high velocity gradients, on the aneurysmal wall the predictions with the Newtonian and non-Newtonian blood models were similar. Copyright © 2005 John Wiley & Sons, Ltd.

Más información

Título según WOS: Non-Newtonian blood flow dynamics in a right internal carotid artery with a saccular aneurysm
Título según SCOPUS: Non-Newtonian blood flow dynamics in a right internal carotid artery with a saccular aneurysm
Título de la Revista: INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Volumen: 50
Número: 6
Editorial: Wiley
Fecha de publicación: 2006
Página de inicio: 751
Página final: 764
Idioma: English
URL: http://doi.wiley.com/10.1002/fld.1078
DOI:

10.1002/fld.1078

Notas: ISI, SCOPUS