Modeling the Mechanical Response of a Dual-Phase Steel Based on Individual-Phase Tensile Properties

Alvarez, Paulina; Munoz, Francisco; Celentano, Diego; Artigas, Alfredo; Castro Cerda, Felipe M.; Ponthot, Jean-Philippe; Monsalve, Alberto

Abstract

In this work, the engineering stress-strain tensile curve and the force-deflection bending curve of two Dual-Phase (DP) steels are modeled, combining the mechanical data of fully ferritic and fully martensitic steels. The data is coupled by a modified law of mixture, which includes a partition parameterqthat takes into account the strength and strain distributions in both martensite and ferrite phases. The resulting constitutive model is solved in the context of the finite element method assuming a modified mixture rule in which a new parameterq ' is defined in order to extend the capabilities of the model to deal with triaxial stresses and strains and thus achieve a good agreement between experimental results and numerical predictions. The model results show that the martensite only deforms elastically, while the ferrite deforms both elastically and plastically. Furthermore, the partition factorq ' is found to strongly depend on the ferritic strain level. Finally, it is possible to conclude that the maximum strength of the studied DP steels is moderately influenced by the maximum strength of martensite.

Más información

Título según WOS: Modeling the Mechanical Response of a Dual-Phase Steel Based on Individual-Phase Tensile Properties
Título de la Revista: METALS
Volumen: 10
Número: 8
Editorial: MDPI
Fecha de publicación: 2020
DOI:

10.3390/MET10081031

Notas: ISI